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As part of ongoing transannulation studies, the practical synthesis of an allene-linked c-butenolide from
L-malic acid and its substrate-controlled [2+2] photocycloaddition to the tricyclic core of bielschowskysin
(1) are described.

� 2009 Elsevier Ltd. All rights reserved.
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West Indian gorgonian octocorals are rich sources of terpenoids
with a high propensity to produce secondary metabolites with
promising pharmacological activities.1 In particular, the Rodríguez
group have reported several new classes of marine natural prod-
ucts from Pseudopterogorgia kallos; otherwise named Bielschowsky
after the discoverer of this Caribbean Sea plume.2,3 Bielschowsky-
sin4 (1) and providencin5 (2), for example, represent new founding
members of highly oxygenated cyclobutane-classes of
furanocembranoids.
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1:bielschowskysin 2:providencin

Besides the clear structural challenge, our interest with biels-
chowskysin (1) resides in unlocking the pharmacophoric features
and molecular targets that are responsible for its antiplasmodial
activity against several drug resistant strains of the malaria-caus-
ing protozoan parasite, Plasmodium falciparum (IC50 � 10 lg ml�1).
With a further view to expanding transannulation approaches to
natural product frameworks, we have embarked on the total syn-
thesis of 1, especially since re-isolation efforts from various P. kal-
los sources have proved unfruitful due to seasonal or chemotype
variations, and only trace amounts of natural 1 remain.6 Herein,
we describe a biomimetically inspired model study to fuse the tri-
ll rights reserved.
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cyclic core of bielschowskysin (cf. 4) via the [2+2] photocycloaddi-
tion of an allenyl-2(5H)-furanone (cf. 3) under high stereocontrol
(Fig. 1).

By considering the connective relationships between cembra-
noid natural products,1–5 we proposed to mold the bielschowsky-
ane ring system (4) through a formal [2+2] transannulation of an
allene-butenolide functionalised furanocembrane macrocycle
(3).7 Conceivably this may involve successive or concerted bond
formations between C7/C11 and C6/C12. Bray and Pattenden, for
example, have constructed the cyclobutane moiety of providencin
(2) by employing an intramolecular C–H insertion reaction.5 While
our work was ongoing,7 Doroh and Sulikowski published the valid-
ity of a [2+2]-photochemical approach to bielschowskysin (1) via
an enol ether appended butenolide.8 Indeed, literature examples
support similar intramolecular photocycloadditions of double-
bonds appended to cyclopentenones9, and an allene-butenolide
photocycloaddition10 has been applied to the synthesis of solanoe-
clepin A. Despite these related studies, our focus herein was to de-
velop a reproducible and practical synthesis that could be readily
accessed and exploited within a transannular bielschowskyane
manifold (cf. 3).

As a model system, we targeted the allene-butenolide 5 via the
benzylidene 6 (Schemes 1 and 2). First, commercially available L-
malic acid (7) was reduced to triol 8 using borane-dimethyl sul-
fide.11 Protection of 8 in acetone with CuSO4 and a catalytic
3:furanocembrane 4:bielschowskyane
O
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Figure 1. Proposed biomimetic transannulation strategy.
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Scheme 1. Reaction conditions: (a) BH3�SMe2, rt, 16 h, 95%; (b) acetone, CuSO4,
p-TsOH, rt, 18 h, 67%; (c) (COCl)2, DMSO, Et3N, CH2Cl2, �78 �C, 1.5 h; MeMgBr, Et2O,
�78 �C, 3 h ; PCC, NaOAc, MS 4 Å, CH2Cl2, rt, 5 h, 43%, 3 steps; (d) ethynylmagne-
sium bromide, Et2O, �78 �C, 15 min, rt, 5 h, 72%; (e) PhCH(OMe)2, p-TsOH, CH2Cl2,
rt, 75%.
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Scheme 2. Reaction conditions: (a) (COCl)2, DMSO, Et3N, CH2Cl2, �78 �C, 1.5 h; (b)
Br�Ph3PCH2CO2Me, Et3N, MeOH, 0 �C, 3 h, 60%, 2 steps (4:1 Z/E); (c) H2SO4, MeOH, rt,
overnight, 70 % (d) TMSOTf/2,6-lutidine, CH2Cl2, 0 �C to rt, 2 h, 62%, (e) (CH2O)n,
i-Pr2NH, CuBr, dioxane, reflux, 3 h, 68% (f) hm, hexane/CH2Cl2, rt, 12 h, 70%.
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Figure 2. X-ray structure of photoadduct 17.
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amount of PTSA subsequently produced the acetonide 9 in 67%
yield.12

Swern oxidation of 9 followed by the addition of methyl magne-
sium bromide and subsequent PCC oxidation afforded the methyl
ketone 10 in 43% overall yield. Under chelation control, the Grig-
nard addition to ketone 10 with ethynylmagnesium bromide pro-
vided a 4:1 separable mixture of propargylic alcohols, giving the
major diastereomer 11 in 72% yield. Treatment of the ethynyl car-
binol 11 with benzaldehyde dimethylacetal in the presence of
p-TsOH transformed the acetonide 11 smoothly to the more stable
six-membered benzylidene acetal 6.13

Aldehyde formation of 12 from alcohol 6 followed by Wittig
homologation in methanol produced a 4:1 cis/trans mixture of
a,b-unsaturated esters, with the cis-isomer 13 predominating
(Scheme 2). The c-butenolide 14 was then prepared in 70% yield
by cyclising 13 in aqueous sulfuric acid in methanol at room tem-
perature. Protection of the alcohol 14 as its TMS ether 15 and sub-
sequent homologation of the acetylene, with (CH2O)n, i-Pr2NH and
CuBr in refluxing dioxane,14 directly afforded the allene precursor 5
in 68% yield for cycloaddition studies.

Initial thermal [2+2] cycloaddition studies on butenolides akin
to 5 were unproductive. Although the free-carbinol form of 5 was
found to undergo a photo-induced cyclisation, the silylated sub-
strate 5 cleanly underwent a [2+2] cycloaddition to the photoad-
duct 16. Conveniently, we found that the irradiation of 5 in a 1:1
(v/v) solution of dichloromethane/hexane could be performed reli-
ably with three conventional UV lamps (3 � 6 W, k = 254 nm) over
12 h.15 This gave a single diastereomeric photoadduct 16 in 70%
yield. The photoadduct 16 displayed all characteristic 1H and 13C
NMR cyclobutane peaks, which was confirmed unambiguously by
single-crystal X-ray analysis of its desilylated form 17 (Fig. 2).16

As anticipated,8,9 the incorporation of a tertiary carbinol into the
allenyl-arm of 5 favoured cyclisation to the tricyclo[3.3.0]oxohep-
tane ring structure 16, as opposed to alternative modes of closure.
Here, the combination of geminal-disubstituted and 1,3-allenylic
conformational effects are believed to play a role in determining
the stereochemical outcome. For instance, the six-membered cyc-
lised counterparts to 16 can also form with allene-substrates lack-
ing a quaternary centre, whereby exceptions to the ‘rule-of-five’
can occur and the exo-methylene of the allene can react with the
butenolide.9a

In summary, we have demonstrated the intramolecular feasibil-
ity of our biometically inspired strategy to form the tricyclic core
(17) of bielschowskysin (1) by virtue of a substrate-controlled
[2+2] photocycloaddition of an allene-butenolide (5). In practice,
gram-quantities of the butenolide 15 have been prepared repro-
ducibly, and transannular manifolds (cf. furanocembrane 3) to gen-
erate tetracyclo[9.3.3.0]tetradecanes (cf. bielschowskyane 4) are
being explored. Further efforts towards the total synthesis of biels-
chowskysin (1) are actively being pursued in our laboratories and
will be published in due course.
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